Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation.

نویسندگان

  • Jan Gründemann
  • Beverley A Clark
چکیده

Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, K(Ca)3.1) by local, activity-dependent calcium (Ca(2+)) influx at nodes of Ranvier via a T-type voltage-gated Ca(2+) current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nodes of Ranvier: Molecular Assembly and Maintenance.

Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of ...

متن کامل

Neuro-glial interactions at the nodes of Ranvier: implication in health and diseases

Specific cell adhesion molecules (CAMs) are dedicated to the formation of axo-glial contacts at the nodes of Ranvier of myelinated axons. They play a central role in the organization and maintenance of the axonal domains: the node, paranode, and juxtaparanode. In particular, CAMs are essential for the accumulation of voltage-gated sodium channels at the nodal gap that ensures the rapid and salt...

متن کامل

Astrocytes Speed Action Potential Propagation

Glia affect neural circuits in numerous ways. Microglia strip synapses and clear debris after injury; oligodendrocytes form myelin, which regulates axon conduction velocity and limits sprouting; and astrocytes direct blood flow to active circuits, provide nutrients and growth factors, regulate extracellular ion concentrations, guide neurite growth, promote synaptogenesis, stabilize dendritic sp...

متن کامل

Vesicular apparatus, including functional calcium channels, are present in developing rodent optic nerve axons and are required for normal node of Ranvier formation.

P/Q-type calcium channels are known to form clusters at the presynaptic membrane where they mediate calcium influx, triggering vesicle fusion. We now report functional P/Q channel clusters in the axolemma of developing central axons that are also associated with sites of vesicle fusion. These channels were activated by axonal action potentials and the resulting calcium influx is well suited to ...

متن کامل

Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy.

We used stimulated emission depletion (STED) superresolution microscopy to analyze the nanoscale organization of 12 glial and axonal proteins at the nodes of Ranvier of teased sciatic nerve fibers. Cytoskeletal proteins of the axon (betaIV spectrin, ankyrin G) exhibit a high degree of one-dimensional longitudinal order at nodal gaps. In contrast, axonal and glial nodal adhesion molecules [neuro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 12 11  شماره 

صفحات  -

تاریخ انتشار 2015